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PREFACE

The purpose of this work was to obtain the solution to three
supersonic flow problems using three different numerical
techniques.

First, a shock/boundary layer problem is solved using
MacCormack's explicit technique. Then, using the same technique
a shrouded rocket nozzle problem is solved. These two problems
showed that the explicit scheme required many minutes of computer
time to solve.

In order to explore more efficient codes to solve the shroud
problem, space marching algorithms were studied. A space
marching algorithm using flux-splitting in the streamwise
direction was applied to an approximate form of the Navier-Stokes
equation. Flux-splitting combined with a global iteration
approach should allow the shroud problem to be solved with a
space marching algorithm. The flux-splitting code was applied to
t vo supersonic flow problems and very good results were obtained.

This work, of course, is not the result of m} labor alone.
Dr Elrod helped me a great deal on the shroud problem. Major
Hodge showed me how to use the explcit code and familiarized me
with the Cray XMP. Dr Shang, of the Flight Dynamics Lab, has
helped me understand the nuiances of MacCormack's explicit
scheme. Finally, I have to thank my wife, Jackie, for having the

patience to endure my absence from her for these past few months.
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Abstract

In the present study, solutions to supersonic £luid dynamic
problems using different numerical techniques are given.

First, the full Navier-Stokes equations are implemented in
an explicit scheme to solve a shock/boundary layer interaction
problem and a shrouded r;cket nozzle problem. 1In the shroud
problem, Mach contours, pressure contours, velocity vectors,
shroud wall pressure and base wall pressure were plotted.
Comparison of the base wall pressure with experimental values
were inconclusive. Shroud thrust increment calculations showed
that the shroud only produces thrust gain at ambient pressures
very close to zero. It was also found that a great deal of
computer time was needed to solve these problems with the
expliclit method.

To arrive at a more efficient scheme, an approximation was
made to the full equations. The approximation is valid for
supersonic flows with thin shear layers and also enables a more
efficient scheme to be applied to the equations.

These schemes are called space marching schemes and allow a
solution of a flow without separation in a single sweep of the
flowfield. Problems with separation regions can also be solved,
but a global iteration process which requires multiple sweeps is
needed.

Two space marching techniques were explored. The flrst,
credited to Vigneron, splits the pressure from the streamwise
flux vector. This code was written for single sweep solutlion of

a flowfleld and 1t was used to solve a subsonic Couette flow and

viil

BRI 'J':-f,'l_'.'.'.'.:-‘ .,_;_. _.-‘,. PR I

NI |\ PP TEESL Jo ~ %t %,

.‘
. .
PLIAAINI R



PN 1 . > % [] & [ & e & J t A - N ] & 'y * ‘a8 U » 1 J 1 \J Ay LY + )

o o p

a supersonic boundary layer problem. The second code, which is

o

‘ original to tt'xls work, uses flux-splitting on the streamwise flux

vector and implements the global iteration technique. The same

g PR N )

two problems solved using Vigneronr's technique are solved using

<
, the flux splitting technique and the shock/boundary layer ;
' interaction problem is also solved. f
It was found that Vigneron's technique is more efficient for ;

. solving flows without separation. The f£lux-splitting code, !
‘F: however, was found to be about fourteen times faster than the v
explicit code when applied to the shock/boundary layer interact- E

ion problem. '

-;‘ An efficlency parameter in the form of CPU time divided by E
- the number of grid points divided by the number of iterations was Y
calculated for each code. For Vigneron's method the value was .

47x10* , for the explicit method the value was 292 x 107 and
A for the current method the value was 46 x 10°* "
o
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I. INTRODUCTION

Engineers are continually looking for ways to increase the

efficiency of rocket engines since for every additional pound of
thrust galned another pound of payload can be added or a higher
orbit can be achleved. One way of increasing the thrust is to
increase the effectiveness of the nozzle. Nozzles are designed for
a specific altitude and at any other altitude the nozzle thrust

is not optimum. Deployable nozzles are one method of increasing
the thrust above the design altitude and shrouding the nozzle is
possibly another method.

Figures 1 and 2 show the basic features of shrouded rocket
nozzles. When the flow from the nozzle(s) is overexpanded the
shroud is ineffective since the exhaust plume will not attach to
the shroud. But, when the flow from the nozzle(s) is
underexpanded the exhaust plume will expand out and attach to the
shroud wall essentially providing a larger exhaust exit area.
There is also the possibility that the shroud will be short
enough so that the expanded flow will not attach to the shroud,
but that case will not be studied here. Allowing the exhaust
plume to further expand so that the exit pressure is closer to
ambient pressure means that the exhaust flow is nearly optimum
and hopefully the thrust is a maximum. However, as will be seen

in Chapter 11, many factors affect the thrust of the shroud and
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Figure 1 Shrouded Nozzle: Overexpanded

Figure 2 Shrouded Nozzle: Underexpanded
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the addition of the shroud may cause a net thrust gain or a net
thrust loss compared to the unshrouded nozzle.

Goethert (7) was the first to study the effects of shrouded
rocket nozzles. Actually, Goethert used the shroud to eliminate
the problem of nozzle burn through which occured on the clustered
nozzles of the early Polaris missles. After Goethert, Holmes and
Matz (8) studied the effects of shroud shape, shroud size and
nozzle spacing on the shroud flow field. More recently, Moran (1l1)
has completed experimental studies with various shroud shapes and
nozzle configurations on both two and three dimensional nozzles.

On the numerical side, Roache and Mueller (13) studied
incompressible and compressible flow over backsteps, which is
similar to a single shrouded nozzle. Recently, Bardina and
Lombard (3) have applied a three-dimensional split coefficient
implicit code to shrouded multi-nozzles and successfully predict-
ed the characteristic features of the flow.

The primary objective of the present work is to develop
numerical algorithms capable of efficlently simulating predomin-
ately supersonic flowfields, such as shrouded rocket nozzles.
Numerical simulation of the flow inside the shroud will normally
give more detailed information than data obtained from experi-
ment. This information may lead to an accurate understanding of
the flow phenomena and consequently the optimum performance of
the shroud can be predicted.

The flow problem inside the shroud of the rocket nozzle is

formulated using the complete unsteady Navier-Stokes (NS)

equations in terms of the conserved variables. The numerical
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scheme used to solve this problem is the explicit MacCormack
method (2:479-489).

Results are first obtalned for one speclal case for which
published results are available; this consists of the
shock/boundary layer interaction problem (4,18). Comparison of
the present results with the avallable data provides a test of
the validity and correctness of the present analysis and solution
procedure.

Solutions are then obtained for the case of primary interest
in the present study, namely the flow for a single shrouded
nozzle. This model problem corresponds to experiment 3B from
reference 11. The geometrlic detalls of the problem are given in
Appendix A.

Upon completion of the shroud problem it was fougd that the
CPU time required to obtain the solution was excessive. This
results from the nature of the explicit scheme which has a limit-
ation on the time step in order to insure a stable scheme.
Therefore, many iterations and large amounts of computer time
were required to reach a steady-state solution. To remove the
time step restriction, fully implicit methods have been
investigated. The implicit methods, however, still require many
iterations to reach the steady state and consequently, still
require large computational costs.

In an effort to decrease the computational costs assocliated
with the implicit algorithms, space marching procedures have been
studied. Partial differential equations are classified according

to three types -- elliptic, parabolic and hyperbollic. 1In

:
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elliptic type problems the solution at one point depends on the
‘ solution at all other points in the domain. The problem must
‘ then be solved within a closed domain so that the influence of
all points in the domain 1s taken into account. 1In parabolic and
» hyperbollc type problems, however, the solution at one point only
. depends on the points in a reqgqion of the domain. These types of

problems are called marching problems since the solution advances

outward from known initial conditions.
b
1 T 1T 171
; Solution edvences outward
_’_ Boundary conditions from imitisl conditions
.. e prescribed here
e . Soundary conditions
o~ Solution domain for propagation problem are prescribed here
~ imitial conditions sre prescribed hese 1
;; Figure 3 Solution domain for a marching problem

| In the present efforts, two types of marching algorithms are
investigated to solve the steady, approximate Navier-Stokes
equations (ANS). The ANS equations differ from the NS equatlions
in neglecting the streamwise diffusion terms and the time depen-
{ dent terms. Now, when the flow 1s supersonic the ANS equations

i are parabolic/hyberbolic in nature, which allows the solutlion to

be marched in the streamwise direction. uUnllike the parabolic
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boundary layer equations, the ANS equations retain the interact-
ion between the viscous and inviscid portions of the flow fleld
which allows the ANS equations to model elliptic flows.

Since the ANS equations are elliptic when the flow is
subsonic, then some method must be found to suppress the
ellipticity so that the equations may be marched. Rubin and Lin
(15), schiff and Steger (16) and Vigneron, Rakich and Tannehill
(19) have successfully applied such methods. 1In all of these
methods, the streamwise flux vector was split in a way that
treats the pressure term separately. For example, in the Schiff
and Steger method, the pressure was assumed to be constant in the
viscous subsonic layer and equal to the value from the adjacent
supersonic flow, while Rubin and Lin indicate that setting the
streamwise derivative of the pressure to zero can be a valid
approximation for flows with cold walls. In any case, the error
is confined to only a thin sublayer adjacent to the wall.
Vigneron, Rakich and Tannehill approximated the streamwise
derivative term with a weighting between implicit and explicit
differencing that depends on the local Mach number.

The method of Vigneron, Rakich and Tannehill, known as
vigneron's method, was used to solve two problems. The first
problem is the Couette flow inside a channel and the second
problem is the supersonic laminar flow over a flat plate. Be-
cause the Couette problem is a fully developed flow, the stream-
wise derivatives are zero and the ANS equations are the exact

equations for the problem. Also, the Couette flow has an exact

analytical solution. The supersonic boundary layer flow has been
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solved by Lawerence and Tannehlll (10) and provides a more severe

check for the code.

A new approach to spatially marching the ANS equations 1is
implemented in the present work. 1In this method, referred to as
the current method, the Van Leer flux-splitting technique (1) is
used to decompose the streamwise flux vector into two flux
vectors which separately model the information traveling upstream
and the information traveling downstream. Such splitting would
appear to be better than the pressure splitting method since it
is more representative of the physics of the flow field and would
assure that the upstream traveling information does not
destabilize the marching algorithm. Solutions are obtained for
the same two problems solved using Vigneron's technigque and
both are compared. Also, the solution to the shock/boundary
layer interaction problem is obtalned and compared to the solut-
ion from the explicit code and the results obtained by
Thomas (18).

Finally, a qualitative comparison between all the methods

is given.
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Ir. THEORY

In this chapter the equatlions governing the flow problems
are examined. For the shroud problem a simple control volume
analysis will reveal the important properties that affect the
thrust galn of the shroud/nozzle confliguration. Next, the
equations to be used in the numerical schemes are presented;
starting with the general form, advancing to the vector form of
the unsteady Navier-Stokes equations and finally arriving at the
approximate Navier-stokes equations. Then, the flux-splitting
technique used in the current method is discussed. Flinally, the
chapter will conclude by presenting the analytical solution to

the Couette flow problem.

SHROUD ANALYSIS
Many important features of this problem can be analyzed by a

simple control volume analysis. Equations for the thrust of the

shroud and the nozzle are derived by using the x-momentum equation

F,=fu!dm (1)

Assuming that the flow properties and amblent conditions are a
constant, then Eq.1 can be applied to the control volume (CV)

shown {n figure 4 to glve

T, = my, + (p, - P) A,

a e o o
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This is the familiar rocket thrust equation. Now, by applylng

Eq. 1 to the CV shown in figure 5, another equation for the thrust
of the shroud can be obtalned

T, = muy + (Pp ~ PJJAy + (Pa = PJAL - (3)

Recognizing that the thrust of the nozzle alone is given by

Tn"'m“n"'(pn‘Pl)An (4)

then Eq 3 can be rewritten as

AT=T.—T.=(D.—P.)A5—f (S)

EqQ 5 shows the importance of the shroud base pressure in in-
creasing the thrust of the nozzle. If the shroud base pressure
force is higher than the ambient pressure force plus the shear
force, then the thrust increment is positive; otherwise the

thrust increment is zero or negative.

GOVERNING EQUATIONS

The integral analysis given above can only give information
on the gross properties of the flow, such as the thrust. For a
more detalled analysis, however, the equations of motion

expressing the conservation of mass, momentum and energy are

required in the differential form. 1In generalized coordinates
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the conservation of mass equation is 3

Ap/Ot + Ve (pV) = 0 (6)

The conservation of linear momentum equation is

t

3

The conservation of energy equation is .
3

p(De/Dt) = -p(Ve V) « & — Ve gq (8) ‘

where ¢ 1is the dissipation function and is given by "

9
=7:(V V) (9

[N
PR RS ARSI

=L

In order to complete this set of equations the pressure,

the stress tensor and the heat conduction vector must be related 7

- to the other varlables. Only perfect gases will be considered

) P4

here and thus the following equation of state will be used

= pRT 3

. p p ( 10 ) '\
;;

>

where R s the universal gas constant. Since only Newtonian :

fluids will be studied, Stoke's law of friction can be used L

- -

f to relate the shear stress tensor to the gradient of the velocity )

vector as

-
oy
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.,-=;V.VI+‘.;[VV+(VV)T] (11)

Finally, the heat flux vector is related to the gradient of the

temperature through Fourler's law of heat conduction
q:-—kVT (12)

where the conductivity, k, is a function of the temperature.
For numerical solution these equations can be expressed in
vector form in cartesian coordinates. Also, to simplify the
finite difference algorithms for problems requiring complex
grids, the equations are wiritten in terms of a computational

space. Eq 6 through Eq 12 are then written as

3/ U/) + O/ [:(B-Ey) + &(Fi-Fy)l}

+ 8/3n{T ' [n:(Bi-Ey) + ny{Fi-Fy)]} = 0 (13)

U= pY (14)

12

RIS



»
LN S

E = ple +1/2 (v’ + v

by

13

a,m g™ -
» . -
( D oS ~¢-"- ce ™ .
f}.' " - - h Y
o EN R AN IO NS
N ALY AR AR N
RN

(19)

g w8




]

NPT

[SEREN

E> ]

ool

. Jﬁl "I

Tyx = (2/ 3)“[%‘1“{*":“1})-(;,';*"y'ﬂ)l

Tyy = (2/ 3)“[2(5';*7),Y,,)—(E,ut*-n,u,,)] (20)
Ty = l‘(fy“;*'ﬂ,u"*-tﬂ‘*-n,v")

q; = -k (thf"'ﬂxTn)

q, = -k (&, Tg+n,Ty) (21)

For most high Reynold's number flows solved by finite
differences, an approximate form of the Navier-Stokes equations
(ANS) can be solved. The ANS equations to be used are sometimes
incorrectly called the "parabolized" Navier-Stokes equations
although they are actually parabolic/hyperbolic. The ANS equat-
ions are derived from the NS equations with the following reason-
ing. The grid densities allowed by computer memory and cost
limitations usually only allow the viscous terms to be accurately
resolved in one coordinate direction. The viscous terms in the
direction normal to a surface are needed for such quantities as
shear forces and energy transfer rates. The streamwise viscous
terms, then, are not accurately resolved even when the NS equat-
ions are solved. The ANS equations are arrived at by simply
neglecting the streamwise viscous terms and the time dependent
texrms of the full Navier-Stokes equations written in Cartestan

coordinates and can be expressed as

14
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i .
' 3E.'/0x" + OF,'/dy’ - OF,'[0y" = 0 (22 -'.
E' - :.:., . (23)
plu“vl .,
(B +ph
’ . F p.v. :
: F, = pu'y’ (24) ¢
P+ p :
(B ~p)
- -
] 0 ] [ ] 1 1
F, =u/Re, | Ou'/dy v
4/3 ov'/3y' (23) !
. u'du’/By" + (4/3)v'Ov'/By" + [(y-1)M*Pr]" OT"/dy’ :
Where the Reynold's number i{s defined by ®
"o Rey = pjuiL/py (26)




W
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and the equation of state is now

p = p T /M (27)

The variables are non-dimensionallized as follows

v = ufy * = v/y x" = x/L
y = y/L P = plp e = efu
. (28)
P’ =plowt  u = plm T = T/Ty
8 = afy

In many problems the viscous/inviscid regions interact and
to capture this interaction with the fewest number of grid
points, stretching must be applied in the normal direction. To
facilitate this stretching, the equations are written in
computational coordinates with only the normal coordinate
transformed. The ANS equations can be easily modifled for these
coordinates as follows. The normal direction In computational
coordinates will be designated as eta. The normal direction
derivative in physical space can then be written in terms of the

normal direction derivative in computational space

/8y’ = dn/dy" 8/dn

16
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substitiuting into Eq 22 ylelds K
'- s .
OB /Ox" + 1y0F;'/0n - 1,0F, [0n =0 :
) dividing by 7y Jlves
. ;
"
(t/ny) OB’/Ox" + OF;"/0n - OF, /8n =0 (29)
if where N
»
] o s t
Fo=n 7ys/Re, | Ou’/On . ]
(4/3)9v* /09 (30) X
] ] ~
u'Ou’/On + (4/3)v'Ov’ /09 + [(y-1)M,*Pr]™ T /39 Ny
These equations are used in the current method. y
\]
' ~
N :
- "
Flux Splitting N
’
Since the streamwise flux vector of the ANS equations only y
E contains inviscid terms, then this vector may be "split" into two
flux vectors. One flux vector, called the plus flux vector, .
models information propagation downstream. The negative flux N
R vector models information propagation upstream. :
D\ n
- Starting with the derivative of the streamwise flux vector
v
03',/6:' ]
v N
3
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This can be written as

i [Q] aU*/dx’
3
1
where '
]
(Q] = 9E; /aU. (31) .
';'. Now R, has the property (2:282) :
E.. - U. )
i = [Q] (32
’ A similarity transformation also exits so that (2:281) p
(L1 {QI [R] = I3 | (33)
. J
- where
(L] = matrix of left eigenvectors, X
(R] = matrix of right eigenvectors,
-i [A] = matrix of eigenvalues

The eigenvalue matrix can be split into two parts. One part
contains the positive elgenvalues and the other part contains the

S negative eigenvalues. This is written as

[\ = O\ - ) -

Substituting Eq 34 into Eq 33

18
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[L] [QI[R] = (A + AT

Solving for (Q)
[Q) = [LI" [\ [RI + [L]* [\]" (R
- [QF - [Qr 39

The streamwlse flux vector can then be written

E'=[QIr U« [Qr v’

CE* B (36)

The exact elements of Ei" and ™ may differ. The form used in

this work was derived by Van Leer and is given by

—E".... -
B = | B pud(y-1u'+-22")/y (37)
By

| B nuall(y-1u"+~28"F/12Ay*-1)] + v**/2) i

where

B e = ~— £'87(1/2) (M) (38)
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When the streamwise Mach number is greater than or equal to
one then
Bf.=lﬁ.
and when the streamwise Mach number 1s less than or equal to
negative one then
B =E'

When combined with the proper finite difference
approximations, flux splitting provides a realistic model of the
physics of a flow. Ef'nmdela the information propagation in the
downstream direction and E{'models the information propagation in
the upstream direction. Appropriate finite differences, then
will take the correct information propagation into account when
approximating the derivatives offkf'and E™" . For the ‘B**
derivative a backward difference would be used and for the E{'
derivative a forward difference would be used. An example of a

backward difference is

(Bu/0x);; ~ [u;j-ui-)/ax

and an example of a forward dQlfference is

(Bu/Bx);; ~ [uie—uigl/ax

This splitting method will be applied to the current method

described in Chapter III.
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Couette Flow Solutlon )
‘ A Couette flow is an incompressible flow which consists of a
stationary lower plate and a moving upper plate with a £fluid
between the plates. For the purposes of this work the fluid is b
[ air and the flow is considered two-dimensional and fully
R developed. With these assumptions the x-momentum eqguatlion

of the NS or ANS equations reduces to

E: d’u’/dy =0 :
With the boundary conditions .
¥ ’
wy’'=0)=0 ; uy=1)=1 A
) the solution is N
o .
9 <
wy) =y (39)
-

’ The energy equatlon is .
| (du’/dy’? + [(y-1)MPr] (d*T*/dy™) = 0 :
> ;
P (

and the boundary condtions are
4 TO'=0)=1 ; TU'=)=1 :




" .i
-9

Substituting Eq 39 into the energy equation and applying the "

‘!

i boundary conditions gives the solution »
T'(y") = 10 - J(y-M{Pr)/2} (y - y') (40) ;

g- kY
-

e >
ol :
.J‘
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III. Numerical Solution Methods

The important concepts of solving the governing equations 4

using finite difference methods are discussed in this chapter.

B

“»

- First, the governing equations are examined carefully with the
aim of selecting an efficient numerical scheme for their
solution. Thereafter, the finite difference form of the

equations is presented, together with the initialization used for :

YN

all variables. The procedure for solving the resulting algebraic ’
simultaneous equations is described and some details about the
implementation of the boundary conditions are discussed.
Inherently, the governing equations are an extremely stiff,
non-linear system of equations and therefore their numerical
solution deserves special care. The most widespread method of
ii solution is the use of finite difference discretization. Simply '
put, the finite difference method converts partial differential
eguations (PDE) into a system of algebraic equations. These

equations are then written at the discretized grid points used to :

BN

approximate the flow domain. The system of equations can then be

solved explicitly or implicitly.

~
“
\

In an explicit scheme the finite difference form of the

| XA

differential equation is written so that only one unknown appears

in the equation. For example, the heat equation

/O = a /O
(41)
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An explicit formulation is

(™ = uf)Yat = (a/(ax}) [u,® - 20 + 2] (42)
where n is the time index and j is the space index. Because an
initial condition must be specified, then the values at n will
always be known. Only one unknown,uf*', appears in the equation.
Explicit methods are generally easy to code, but require very
small time steps to satisfy stability restrictions. Therefore,
many iterations and large computer times are required to reach a
steady-state solution. This can be a severe problem

when very fine grlids must be used to capture flow detalls.

An implicit finite difference equation for the heat eguation
could be written by evaluating the terms on the right hand side
of EQ 42 at the n+l time level. The implicit ;chemes, then
require the simultaneous solution of several equations. For a
linear system of equations implicit methods are unconditionally
stable. However, to be able to solve the discretized form of the
governing equations implicitly, they must first be linearized.
This leads to a matrix system of equations which can be solved to
obtain the variables at each grid point, but the method is no
longer unconditionally stable. The maximum time step is much
larger than allowed for the explicit methods so that fewer
iterations and lower computer times are required. Also, the
explicit methods may fail for problems having very steep grad-

ients so the only choice is to use an implicit method.
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MacCormack's Explicit Method

The explicit method used in this work is a two-dimensional
verslon of MacCormack's predictor-corrector scheme(2:479-489).
This scheme was chosen because it was readlly avallable and had
been successfully used in earlier AFIT studles(14). The
empirical stability constraint on this scheme is given in

cartesian coordinates by (2:484)

a4 < olathn/l + 2/Rea )

(43)
where sigma is approximately 0.9 and (At)gp is the inviscid CFL
condition given by (2:484)

(atdom. < [l/x + il/y + a{t/(ax)? + 1/(ay)) T (44)

The particular code used In this study was obtalned

from the Computational Aerodynamlics Group, Flight Dynamics Lab,
wright-Patterson Alr Force Base. The code has been vectorized
for the Cray XMP supercomputer and contains a Baldwin-Lomax
arithmetic turbulence model, although all the problems considered
here will be laminarx. The explicit code discretizes the dimen-
sional form of the uns* ady NS equations in computational
coordinates with all variables in English units. For more
detalls on MacCormack's explicit scheme see reference 2 and for

the detalls on the code see reference 14.
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gpace Marching Algorithms
*' The first method follows the method used by Vigneron to
solve the ANS equations using a space marching scheme. This
allows the solution of a predominately supersonic flow to be
»
.. obtained with a single sweep of the problem domain. In the
subsonic portions of the domain information traveling upstream
must be suppressed, and Vigneron achieved this by "splitting® the
-~ streamwise pressure gradient from the streamwise flux vector. Eq 4
v "
22 would then be =
. OB, /dx' + AP /dx" + OF"/0y" - OF,"3y" = 0 (45) “
e !
where
LR
AU
a B~ = P u? @p
ﬁ"' ﬂ.u"‘ ( ‘6 )
(B + p'n’
and
. 0 j
. s L
P = (1-o)p (47) :
0 i
0 By
X |
@
Vigneron's stablility analysis showed that for the solution ?
)
to be marched in the streamwise direction omega must satisfy i
% .
! 2
o <YM/l + (7-1)M,7) (48) %a
N
<
2
26 N
+ .
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\
' For computational purposes a safety factor is applied to Eq 48 i
® = eyM 1 + (y-1)M,"] (49) ;
o
- where sigma is usually 0.9. The Beam-Warming finite difference o
equation {s given by N
= ;
A'E = ax0/0x (a'E) +~ axd/0x (E") (50)
where ‘
. . LY
&
s'E=E"-F (51) N
.~
This is the Buler implicit form which is flrst order accurate in :
53 the marching (streamwise) direction and second order accurate in
-‘ -
the normal direction. When Eq 50 is applied to Eq 45 the stream- K
wise pressure gradient term is treated as an explicit term and ;
. taken to the right hand side (RHS). This term is then backward -
. differenced to retain the space marching technique. However,
v
when this is done the streamwise step size must meet the 3
stability requirement E
N K
ho! B\
h °
 (ax)ain > {(1/4)pu/p)Y(1/M,") ~ 1Kay)*}/(vsin'(8/2)} (52) >
)
~ where g is the wave number. This requlirement can be a severe
restriction for low-speed flows. This restriction can be removed
27
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using two methods -- neglecting the streamwise pressure gradient

term and specifying the pressure field. Neglecting the stream-
wise pressure gradient is an obvious way to remove the restric-
tion, but the method must then be used only for flows with small
or no streamwise pressure gradient. Specifying the pressure
field allows the streamwise pressure gradient term to be forward
differenced and again removes the stability restriction.

However, if the pressure field is not exactly known, then the
method must be modified for global iterations where the field is
swept until the correct solution is reached. This diminishes the
attractiveness of the single-sweep marching technique, but only a
few sweeps are usually required. The code developed for the
present work using Vigneron's method will be referred to as PANS.
Vigneron's method closely follows the current method except that
the PANS code is a single sweep code while the current method is
written for global iterations.

The goal here is to develop a method which can successfully
be applied to large separation regions. Because the flux-split-
ting correctly models the characteristic propagation of informat-
fon in both subsonic and supersonic flows it would be a better
candidate for a successful method. However, to correctly apply
the flux-splitting a forward difference must be applied to the
negative flux term. This means that the marching scheme must be
modified for global iterations since the forward difference
requires data that has not been calculated. To solve this
problem the negative flux term will be calculated using "old"

data, that is, data obtained from the previous solution sweep.
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The derivation of the current algorithm follows that given for

.

Vigneron's method in reference 2. Putting Eq 22 into delta form and
substituting into Eq 50 gives

» a'E;’ = -ax'[0/0y’ (a'F;’ - A'F,’)] - ax10/0y" (F," - F,™)] (53)
- 3
From Eq 36 the following equation can be written ﬁ
A'B’ = a'B** + A'B 1
Substituting Eq 36 into Eq 53 results in R
ol
]
“ I % L 23 s Y s .-~
. 8B « 'R = —ax'(8/0y" (a'F," - a'F,Y) - a"0/9y" (F;* - ") (54) .
This equation is linearized according to
’ a'F ~ [R}a'U" (55)
AR, ~ [W}a'U' (56)
. where
&
(R) = (9F,"/aU"Y (57)
"

29




[w? = (9F,’/0U") (58) 4

3
R
According to the flux-splitting method the positive streamwise flux
N vector for subsonic streamwise Mach number is written
a'B™ ~ [QIa'V" (59)
- N
A and when the streamwise mach number s supersonic ;
A'B™=A'E’ ~ [Q]a'U° (60) S
. ) {
2 o
The elements of (Q), [Q]" , [R] and (V] are given in Appendix B. N
Now Eq 54 becomes ‘e
S [QI'a'U" + #'B = -ax'[8/0y"(RI'U" - [W}a'U"] (61) 2
o
-ax70/8y" (F;" - P, F
&
f
- f
::j Taking the implicit terms to the left-hand-side (LHS) and the §
explicit terms to the right-hand-side (RHS) results in p
e 28
-.
" [QI*'a'U" + ax18/3y" (R]'a'U°" - [W1A'U")] )
R (62) N
= -ax[0/3y" (7 - F,")] - a'E;”* .
.
N
4 The flrst partial derivatives are approximated by second order .
)
central differences, for example <
-
- 30 v
!_ K )
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0/0y" URFA'U) ~ (QRFA'U") - RIA'U") 28y (63)

and for the second derivative terms

0/0y" [1s°0/3y" (wa'U}")] ~ (" + 1y A wa'Uy,,, - (va'U, 128y 'y

= (" su M(walu,"); - vV, Y ey ] (64)

This gives the LHS a block tri-dlagonal structure whose elements are
given in Appendix C. The negative split-£flux vector on the RHS

is evaluated using a first order forward dlfference

I &~ lolpy &~
AB, "~ a
& (65)

The viscosity coefficients were evaluated using Sutherland's law

”. = “O.Tlm {T. .”/(T. + TO.)} (66)

The current code, referred to as FANS, 1s carried out as follows:

Step 1: specify the initial conditions for the whole

31
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Step

Step

Step

Step

Step

Step

Step

Step

Step

Step

Step

Step

(-3
..

10:

11:

12:
13:

flowfield. For the PANS code only the

conditions at I=1 need to be specified.

: Calculate B, for the whole flowfield. Skip this step

for the PANS code.

Calculate the streamwise Mach number and the viscosity
coefficient for each J (normal) point at the I
station. For the PANS code calculate

omega lnstead of the streamwise Mach number.

Calculate the F; vector for each J at I

Calculate the derivative of F;® with respect to y for

each J at I

: Calculate the derivative of p* with respect to y for

each J at I

Calculate the RHS vectors for each J

: Calculate the linearlzation Jacobians. For the FANS

code if the local streamwise Mach number is

less than one then calculate [Q]* instead of (Q]
Calculate the LHS matrices

Solve for delta-uU at I+l using the block tri-
dlagonal matrix solver

Update the solution using
U‘kl = U‘l - AlU‘

Calculate the explicit boundary conditions

Repeat Steps 3 through 12 until the solution for the

Lot N,

last streamwise station is obtalned. The first sweep ;
of the flowfield is finished and the PANS K
32 :
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code stops here

Step 14: Go to Step 2 and repeat the process until the

solution has converged.

Please note that the PANS code is not written in
computational coordinates. Therefore, a grid does not need to be
generated; simply specify the streamwise step size, the number of
points in the streamwise direction, the normal step size and the
number of points in the normal directivn. The FANS code does,
however, require a grid to be generated for the normal coordin-
ate.

Although both codes were run on the Cray XMP, no effort was
made to vectorize the codes. 1In fact, vectorization was not

implemented during the compilation of the codes.
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IV Results and Discussion

In this chapter each problem that was solved will be briefly

discussed. The problems are the following:

- Shock/Boundary Layer Interaction (explicit)

- 8ingle Nozzle in a Short Shroud (explicit).

- Couette Flow (PANS, FANS)

- Supersonic Boundary Layer (PANS, FANS)

- Shock/Boundary Layer Interaction (FANS)
A brief description of each problem will be followed by the
results and finally a discussion of the signifigance of the

results.

Shock/Boundary Layer Interaction (explicit)

This problem consists of a shock wave impinging on the

boundary layer over a flat plate as shown in figure 6. The
results obtained here will be compared to the results of Thomas
and Walters(18) and also the results of Beam and Warming(4).

The computational grid, shown in figure 7, is the same as
used by Beam and Warming but the upper boundary was increased to
allow the leading edge shock to exit through the downstream
boundary resulting in a 32x62 cartesian grid. The boundary
conditions for the supersonic inflow were freestream up to the
point where the shock entered the domain and then the invisciad
shock jump conditions from that point to the top of the domain.

The conditions along the top of the domain were also set to the

shock jump conditions and along the outflow boundaries the
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conditions were extrapolated from values of interior points.
Along the bottom of the domain symmetry conditions were used
before the leading edge of the plate and on the plate no-slip
and constant wall temperature conditions were applied. The wall
temperature was set to the free-stream temperature of 460
Rankine.

Fiqure 8 shows the pressure contours, Figure 9 shows the
pressure along the bottom of the domain and Figure 10 shows the
friction coefficient along the plate. The results agree well
with the solution obtained by Beam and Warming (4). However, a few
problems should be pointed out. First, a large amount of damping
was necessary to achieve a smooth solution. Next, as shown by
Thomas and Walters (18), a grid density of 60x90 points is necessary
to accurately resolve the separation region. The grid used by
the explicit code was 32x62 points and required 22,000 iterations
with a run time of 968 seconds on the Cray XMP. The efficiency
parameter, CPU time in seconds divided by the number of grid
points divided by the number of iterations, was 22 x 10°® . Only
one streamwise station exhibited the negative streamwise velocity
characteristic of the separation region. Finally, the separation
region of the flow was very slow in developing which reveals
another weakness of the explicit code -- slow convergence of the

solution in subsonic regions.

Single Nozzle in a Short Shroud

The problem to be solved now is the two-dimensional single

nozzle in a short shroud, experiment 3B from reference 11.
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Figure 8 Shock/Boundary Layer: Pressure contours using the
explicit code
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This 1is a cold alr flow where a chamber was pressurized to 13680
pounds per square foot (psf) and the exhaust chamber was
evacuated to about 36 psf. The pressure chamber exhausted into
the test section where the nozzle block and shroud block were
located. The exhaust chamber pressure would gradually increase
during the experiment resulting in an unsteady flow where the
nozzle exhaust plume woﬁld eventually separate from the shroud
wall. The nozzle had a 4:1 exit area to throat area with an
isentropic exit Mach number of 2.94. More detatils on the
dimensions are given in Appendix A. For this numerical solution
the exhaust chamber pressure will be assumed to be a steady 36
psf so that a steady solution with the exhaust plume attached to
the shroud wall can be computed.

In order to keep the cost and computer time to a minimum the
number of grid points and the location of the grid points in the
domain must be carefully selected. The flow domain was chosen to
be a two-dimensional cartesian coordinate system with x
representing the streamwise direction‘and y the normal direction.
The reference length was chosen to be the length of the shroud --
two inches. Because of the large separation region in this flow
a 45x45 grid was chosen as the best trade-off between run time
and accuracy. To improve the accuracy of the results the grid
points were clustered around high gradient regions and regions of
interest. 1In this case, the high gradient region was near the
exit of the nozzle and the base wall was the region of interest

since this 1s where the pressures from the experiment were taken.

After about five short computer runs the grid in Figure 11 was
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chosen as the best for the problem.

Next, the boundary conditions will be discussed. There are
five important regions where boundary conditions must be applied
in this problem -- the shroud wall, the base wall, the nozzle
exit, the symmetry line and the shroud exit. For both the shroud
wall and the base wall no-slip and constant wall temperature condit-
ions were used; to calculate the density at the wall the
normal gradient of the pressure was assumed to be zero. The nozzle
exit (shroud inlet) conditions were taken to be the exit condit-
ions for an isentropic quasi-one-dimensional nozzle with stagnat-
ion conditions equal to the conditions in the pressure chamber of
the experiment. In order to increase the grid density the flow
was assumed to be symmetrical about the centerline of the shroud
so that the upper boundary of the domain is a symmetry line.
Symmety line conditions were set to be zero gradient except for
the normal velocity component which was set to zero. Finally,
since the shroud exit is a predominately supersonic flow then the
shroud exit conditlions can be calculated from interior polnts by
simple extrapolation.

To arrive at realistic initial conditions the problem
must be thought of as an unsteady problem which reaches a steady-
state solution. The initial conditions would then be that of
the exhaust chamber before the pressure chamber valve was

released, which were taken to be the following:

Po = 36 psf
U = 0.0 ft/sec
Yo = 0.0 ft/sec
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except at the nozzle exit.

0.000045553 slugs/cu ft

The results of the shroud computations are presented in
Flgures 12 through 16. The Mach contour plot (Flgure 12),
pressure contour plot (Figure 13) and velocity vector plot
(Figure 14) reveal the important features of the flow. The Mach
contour plot shows the expanslon of the nozzle plume from a
nozzle exlt Mach number of approximately three to a shroud exit
Mach number of approximately five and a half. Somewhat harder to
see is the compression shock formed when the exhaust plume
strikes the shroud wall. This feature is located in the lower
right hand corner of the plot and shows a drop in Mach number
from 5.5 to 2.5 across the shock.

Details of the seperation region are also revealed in the
Mach contour plot. This region has a very complex flow pattern
containing many eddies and a surprisingly wide range of Mach
contours. For instance, embedded in the predominately subsonic
separation reglon is a supersonic region. This region stretches from
the plume/wall interaction area towards the shroud base. This
phenomenon also shows up in the velocity vector plot. Here, the
arrows close to the plume/shroud interaction region are seen to
point towards the shroud base. Moving closer to the base, the
arrows gradually lengthen, indicating a fluld veloclty increase,
until the flow turns parrallel to wall and the velocity

decreases.

Both the velocity vector plot and the pressure contour plot
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where w i1s the width of the shroud which was two inches. The
amblent pressure is a constant and 1s taken to be thirty six
pounds per square foot. The change in thrust is found to be a
loss of 0.5 pounds force from a nozzle thrust of 14.7 pounds
force. This is a 3.7 percent loss. If the ambient pressure ls
chosen to be zero, however, a thrust gain of 0.4 pounds force ls
calculated, which is a 2.2 percent gain. Thus, only under
certain ambient conditions does the shroud increase the thrust
over the nozzle alone.

The run time on the Cray XMP for elghty thousand time steps

was 2373 seconds. The efficiency parameter 1s then 14 x 107®

Couette Flow

The Couette flow problem has been used previously as a model
problem to test codes (4,18). A Couette flow consists of a
stationary lower plate and a moving upper plate with a fluid
between the plates. For the purposes of thls work the fluld is
alr and the flow 1s considered two-dimensional and steady state.
The characteristic length is the distance between the plates. The
exact solution to this problem for an incompressible flow is, for
the velocity distributlion given by Eq 39 and for the temperature
distribution is given by Eq 40. The pressure and the coefficient
of viscosity were assumed constant and the density 1s calculated
from the equation of state.

Figure 17 shows the results from the PANS and FANS codes for
the Couette flow problem. Both codes are in very good agreement

with the exact solution. Besides providing a dry run for the
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Figure 17 Couette flow: velocity distribution
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codes, this exercise also demonstrated one very important point.

In both codes the flow fields were initialized so that forward
differences could be used on the "split" terms and, as mentioned
earlier, this should relax the step size restriction. Eq 49

applied to this problem yields

(ax")nia > 16

The step size used, however, was

Ax =01

In short, initializing the flow field and using forward

differences on the split terms significantly reduces the size of

the streamwise step size.

Supersonic Boundary Layer
As a second, more severe test for the PANS and FANS codes
the supersonic, laminar boundary layer flow previously worked by

Lawrence and Tannehill (10) will be solved.

This 1s a flat plate, zero pressure gradient flow. The

freestream conditions were the following:

M, = 20
Ty = 3990 Rankine

Re, = 165 x 10°

The characteristic length was taken to be one meter measured from
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the leading edge of the plate.

The flow was initialized at x' = 0.305 using data from the
boundary layer code of Cebeci (6). The initial data was then

marched to x - 0.915 and compared to data at the same location
from Cebecl's code. Step sizes used were ax' = 0.001 and Ay'=
01524 x 10°* with six hundred and twelve grid points in the x-
direction and forty grid points in the y-direction.

Figure 18 presents the tangential velocity profile computed
with a single sweep of the PANS and FANS codes compared to the
boundary layer code. Figure 19 presents the temperature profile.
Clearly, the PANS code provides a more accurate solution than the
FANS code for a single sweep. This is expected, since for
a single sweep the pressure vector was set to zero in the PANS
code and the negative flux vector was set to zero in the FANS
code. Thus, the PANS code only neglects a portion of the \
upstream traveling information, but the FANS code completely
eliminates this information.

Next, the FANS code was applied to the same problem, but
using global iterations. Flgures 20 and 21 compare the FANS code .
run for four sweeps to the PANS code run for one sweep and the
boundary layer code. Now that the minus flux term has been
included in the FANS code, the solutlon 1s Just as accurate as
the PANS solutlon.

An indication of the relative computer effort required by
the two codes is given by a comparison of CPU times. The figure
of merit here i1s the CPU time In seconds divided by the number of

sweeps divided by the number of grid points. For the FANS code
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this was 46 x 10™* and for the PANS code 47x107* .

Shock/Boundary Layer Interaction (FANS)
As another test the FANS code was applied to the

shock/boundary layer interaction problem previously solved using
the explicit code.

To keep the number of grid points to a minumum stretching
in the normal direction was used. The stretching was determined

using a geometric progression (5:8)
] t ] -
AYn =A’-inr“ (68)

where r is called the common ratio. It was found that the
algorithm could not handle a large amount of stretching. The
maximum value of the common ratio was found to be approximately
1.05. By specifying the location of the outer boundary and the
number of points in the normal direction, the minimum y step size

could be calculated from

A’.-in = ’n‘(l"f)/(l -r) (69)
Using the same domain size used by Beam and Warming gives

Ay’ uia = 29097 x 1074

With a grid using four hundred and eighty five points in the

streamwise direction and one hundred and one points in the normal
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direction, solution accuracy would be of the same order as Beam
ﬁ and Warming's solution.
Figures 22 and 23 present the results of the computation.
As can be seen in flgure 22, the pressure contour plot, the code
did an excellent job of capturing the leading edge shock, the
v impinging shock and the reflected shock.
For comparison the results of the explicit code and Thomas'
results have been plotted on fiqure 23. Here, there is quite a

fy difference. The region over which the pressure rises from before .

]

the shock interaction to after the shock interaction is smaller
in the FANS results. There 1s also a "hump" in the FANS

pressure and a smaller hump in Thomas' data, but the explcit

e a

st

pressure curve levels out. Both of these differences are attri-
butable to the damping in each code. The explicit code contains

artificial damping terms and Thomas' code contains damping which y

.-~

o

. results from the upwind differences, but the FANS code does not

- - .

contain added damping. This means that the FANS code will cap-

ture the shocks with less smearing, but overshoots, as seen in ;

- the pressure hump, may occur. :
The code took sixty elght seconds and three global sweeps to

solve the problem on the Cray XMP. This gives an efficliency :

parameter of 46 x 107* . Compared to the results for the same

AR

problem for the explicit code, the FANS code is 14 times faster. .
The efficlency parameter, however, is about an order of magnitude

larger which is to be expected since the FANS code was not 5

R

vectorlzed. !
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Appendix A: Dimensions of the Shroud

The shroud used in this work is a model of nozzle block 3B
used 1n the experiments conducted by Moran (11). The block
consisted of a single converging-diverging, two-dimensional
nozzle cut out of aluminum. The sides of the shroud were formed
from plexiglass and the top and bottom wall of the shroud was
made from removable wood blocks. The figure on this page
shows the shroud dimensions and the drawing on the next page

the original nozzle design.
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Appendix B: Jacoblans

In this appendix the elements of the Jacoblians defined by
Eqs 55, 56, 59 and 60 are presented. These Jacoblans are the
partial derivative of a vector with respect to a vector and are
therefore matrices. Each element will be denoted by the symbol

given to the corresponding Jacobian. Subscripts on the symbols
denote the row and column of the element.
For the [(Q] matrix:
Qu=0
Qu =1
Qu=0
Qu=0

Qu = (1/2)Y(7-8)u"+(y-1}v")
Qe = [2-{y-1)}*

Qus = (7-1)v"

Que = (v-1)

Qs = -u'y’

Que = "

Qu = v’
Qu=0




< Caliat fat Sat gt

I SN

Qu = ~{(7B,"/p) + (y-1)Yu"+v" )"

N Qu = (1B,"/0) - (7-1)3u"+v"}/2 '
Qus = ~(y-t)u’v*
- Qu =7’ ‘

For the [Q* matrix the following are defined:

o = (8°/0U,") = [7(y-1)/28"] [{B'/p"") + (u"+v"?)/5"]
0s = (3a°/0Uy) = [(7-1)/22"] [-u"/5"]

cs = (8a°/0Uy") = [A(y-1)/2a"] [-v"/ "]

¢4 = (3s°/0U") = [7(y-1)/2"] [1/"]

B = [(v-1)/7]u’ + 28"/

E* = p'a"(1/2XM,+1)P

D = ({(y-1hu'+2a'F/A+*-1)} + v"*/2

r the elements are
Qu® = (1/4) [(4*/a"Hp'u*/a")c+a"+p"c]
Qus* = (1/4) (20°/a"{p"u" /a7y +2+p"cy]
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Qus* = (1/4) [0’(p"u"*/a™)),
Qu* = (1/4) [0’ "u"/a"),

Qu* = BQu* + (B*/p) [-(y-10'/p" + 2¢]
Qu* = BQu" + (B*/7) [(v-1X1/p") + 20,
Qes” = BQis” + (2B*/7)es

Qas" = BQi* + (2B /)eq

Qu’ = Qu'v’ - B'v'/p)

Qs" = Qu'v’

Qss* = Qus*v" + E(1/0")

Que’ = Qu'Y’

Qu’ = Qu’D + E{[-(v-11u"/p"+{4a’+Ay-1}u Yo~ (A v-1)a"u"/ 0 W/ (2*-1) - v*¥/p"}

Qes® = Qu'D + E*{[(7-1)'/p* + 48"c; + Ay~1)u"c, + Ay-1)a"/p"Y/(y*-1)}
Qus* = Qu'D + B*{[4a"cy + Ay—~u'c,)/(¥>-1) + v*/n"}

Qu’ = Qu’D + E*([4a"+2Ay-1)u"ley/(+*-1)}

For the elements of the [R] matrix

69

.......................................

AW LLLLCL W

AR TR

VN @ Bk L LAAS A




AN A SO St i gL ol ats O o¥) )k oit AR L b P A A

Ry = ~u'"
Ry=+v

Ry = o

Ry =0

Rat = [(y-1)u"*+(y-8)v"?)/2
Ras = «(7-1)’

Res = (3-y)*

R = -1
: Ra = 0B /6" Mo ly-t)a v )’
Ry = ~(y-1iu'y"
. Res = (0B,/p") - (y-1)u"+3v"?)2
Ru='

For the elements of the (W] matrix

¥ Wy =0 }
¥ u \
]
|
1
|
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Wy = —u/Re [3,(u"/")]
W = p/Re [0,(1/p")
Wes =0

Wi =0

Wa = ~{4/3)s/Re) ,(v"/ ")
Wye =0

ox™

Wss = (4/3)Y1s/Re) 9,(1/p")
w“ = 0

Wa = -#/Re [0,u"/") - (4/30,r/5") - (4/P1)0, (" /(v-1)p"] - [ ov"*/25"]}]
Wae = (#/Re)i~y/Pr) 8,(u"/")

Was = (u/Re)4/3 - ¥/Pr) 3,{v"/p")
W = (#/Re)v/Pr) 8,(1/p")
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Appendix C: Block Tri-diagonal Matrix Elements

When the derivative approximations of Eqs 63 and 64 are
applied to the left-hand-side of Eq 62, a block tri-diagonal
ﬂ matrix results. A block tri-dlagonal matrix is a matrix which

has only three bands of non-zero block elements. These bands

EAT LCLL

consist of the diagonal, sub-diagonal and supra-diagonal block

elements. Each block element is a matrix which, in this case,

[P

are four row by four column matrices. Now, let [A] be a diagonal

block element, (B] a sub-diagonal block element and [C] a

Y-y oy e v,

supra-dliagonal block element. The elements are then given by

g [A) = [Q) + [(ax"/2Re(ay"}) {1 +mi0s P88+ 85 M [W);
[B), = -{(ax’/2ay" )R}y + (ax’/2Re{ay '} Ys;"+ iy Aw]id]
(C); = (ax"/2ay" )R}, - (ax’/2Re(ay P) g+ s ) W)ius

s
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Block 19

MacCormack's explicit technique. Then,

time to solve.

In order to explore more efficient
problem, space marching algorithms were
marching algorithm using flux-splitting
direction was applied to an approximate
equation. Flux-splitting combined with

‘The purpose of this work was to obtain the solution to three
supersonic flow problems using three different numerical techniques.

First, a shock/boundary layer problem is solved using

using the same technigque

a shrouded rocket nozzle problem is solved. These two problems
showed that the explicit scheme required many minutes of computer

codes to solve the shroud
studied. A space

in the streamwise

form of the Navier-Stokes
a global iteration

approach should allow the shroud problem to be solved with a
space marching algorithm. The flux-splitting code was applied to
two supersonic flow problems and very good results were obtained.
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